Counterexample to the Generalized Belfiore-Solé Secrecy Function Conjecture for l-modular lattices

نویسندگان

  • Anne-Maria Ernvall-Hytönen
  • B. A. Sethuraman
چکیده

We show that the secrecy function conjecture that states that the maximum of the secrecy function of an l-modular lattice occurs at 1/ √ l is false, by proving that the 4-modular lattice C = Z⊕ √ 2Z⊕ 2Z fails to satisfy this conjecture. We also indicate how the secrecy function must be modified in the l-modular case to have a more reasonable chance for it to have a maximum at 1/ √ l, and show that the conjecture, modified with this new secrecy function, is true for various 2-modular lattices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counterexample to the $l$-modular Belfiore-Solé Conjecture

We show that the secrecy function conjecture that states that the maximum of the secrecy function of an l-modular lattice occurs at 1/ √ l is false, by proving that the 4-modular lattice C = Z⊕ √ 2Z⊕ 2Z fails to satisfy this conjecture. We also indicate how the secrecy function must be modified in the l-modular case to have a more reasonable chance for it to have a maximum at 1/ √ l, and show t...

متن کامل

On the secrecy gain of $\ell$-modular lattices

We show that for every ` > 1, there is a counterexample to the `-modular secrecy function conjecture by Oggier, Solé and Belfiore. These counterexamples all satisfy the modified conjecture by Ernvall-Hytönen and Sethuraman. Furthermore, we provide a method to prove or disprove the modified conjecture for any given `-modular lattice rationally equivalent to a suitable amount of copies of Z⊕ √ `Z...

متن کامل

On a conjecture by Belfiore and Solé on some lattices

The point of this note is to prove that the secrecy function attains its maximum at y = 1 on all known extremal even unimodular lattices. This is a special case of a conjecture by Belfiore and Solé. Further, we will give a very simple method to verify or disprove the conjecture on any given unimodular lattice.

متن کامل

Some results related to the conjecture by Belfiore and Solé

In the first part of the paper, we consider the relation between kissing number and the secrecy gain. We show that on an n = 24m+8k-dimensional even unimodular lattice, if the shortest vector length is ≥ 2m, then as the number of vectors of length 2m decreases, the secrecy gain increases. We will also prove a similar result on general unimodular lattices. We will also consider the situations wi...

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014